VIRTUALLY FREE PRO-p GROUPS

WOLFGANG HERFORT AND PAVEL ZALESSKII

ABSTRACT. We prove that in the category of pro-p groups any
finitely generated group G with a free open subgroup splits either
as an amalgamated free product or as an HNN-extension over a
finite p-group. From this result we deduce that such a pro-p group
is the pro-p completion of a fundamental group of a finite graph of
finite p-groups.

1. INTRODUCTION

Let p be a prime number, and let G be a pro-p group containing an
open free pro-p subgroup F. If G is torsion free, then, according to the
celebrated theorem of Serre established in [I7], G itself is free pro-p.

The main objective of the paper is to give a description of virtually
free pro-p groups without the assumption of torsion freeness.

Theorem 1.1. Let G be a finitely generated pro-p group with a free
open subgroup F. Then G is the fundamental pro-p group of a finite
graph of finite p-groups of order bounded by |G : F|.

This theorem is the pro-p analogue of the description of finitely gen-
erated virtually free discrete groups proved by Karrass, Pietrovski and
Solitar in [I1]. In the characterization of discrete virtually free groups
Stallings’ theory of ends played a crucial role. In fact the proof of the
theorem of Karrass, Pietrovski and Solitar uses the celebrated theorem
of Stallings proved in [I8] according to which every finitely generated
virtually free group splits as an amalgamated free product or HNN-
extension over a finite group, respectively. The theory of ends for pro-p
groups has been initiated in [12]. However, it is not known whether
an analogue of Stallings’ Theorem holds in this context. We will prove
Theorem and such an analogue for finitely generated virtually free
pro-p groups using purely combinatorial pro-p group methods combined
with results on p-adic representations of finite p-groups.

Date: November 18, 2017.
2010 Mathematics Subject Classification. Primary 20E06; Secondary 20E18,
20E08.
Key words and phrases. Virtually free pro-p group, fundamental pro-p group of
a finite graph of p-groups.
This research was partially supported by CNPq and CAPES.
1



2 WOLFGANG HERFORT AND PAVEL ZALESSKII

Theorem 1.2. Let G be a finitely generated virtually free pro-p group.
Then G is either a non-trivial amalgamated free pro-p product with fi-
nite amalgamating subgroup or a non-trivial HNN-extension with finite
associated subgroups.

As a consequence of Theorem we obtain that a finitely generated
virtually free pro-p group is the pro-p completion of a virtually free
discrete group. However, the discrete result is not used (and cannot be
used) in the proof.

V.A.Romankov proved in [I5] that the automorphism group of a
finitely generated free pro-p group Aut(ﬁn) of rank n > 2/ is infinitely
generated. Therefore, one has that, despite the fact that the auto-
morphism group Aut(F,) of a free group of rank n embeds naturally
in Aut(ﬁn), it is by no means densely embedded there! Nevertheless,
Theorem [1.1| allows us to show that, surpriiingly, the number of con-
jugacy classes of finite p-subgroups in Aut(F,,) is not greater than the
corresponding number for Aut(F,).

Note that the assumption of finite generation in Theorem is es-
sential: there is an example of a split extension H = F'x D, of a free
pro-2 group F' of countable rank which cannot be represented as the
fundamental pro-2 group of a profinite graph of finite 2-groups (see

Example .

The line of proof is as follows. In Section |3| we use a pro-p HNN-
extension to embed a finitely generated virtually free pro-p group G
in a split extension £ = F'x K of a free pro-p group F' and a finite p-
group K with a unique conjugacy class of maximal finite subgroups. In
Section [4| we prove using an inductive argument the following theorem
which connects the structure of any such group F'x K with its action
on M := F/[F, F].

Theorem 1.3. Let E be a semidirect product E = F'x K of a free pro-
p group F of finite rank and a finite p-group K. Then the K-module
M = F/[F, F] is permutational if and only if F' posesses a K -invariant
basis.

This theorem gives an HNN-extension structure on E with finite
base group. In particular, E and, therefore, G acts on a pro-p tree
with finite vertex stabilizers. Using this, [6 Proposition 14], and a
result from [9] on pro-p groups acting on trees we prove in Section
Theorems 1.1} and [1.2] Finally, Section [6] deals with automorphisms of
a free pro-p group.

Basic material on profinite groups can be found in [19,[13]. Through-
out the paper we make the following standard assumptions. Subgroups
are closed and homomorphisms are continuous. For elements x, y in
a group G we will write y* := zyz~! and [z,y] := xyz~'y~!. For a
subset A C G we denote by (A)g the normal closure of A in G, i.e.,
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the smallest closed normal subgroup of G containing A. For profinite
graphs we will use (standard) notations which can be found in [I4].
The Frattini subgroup of G will be denoted by ®(G), and Tor(G) will
stand for the subset of elements of finite order in GG. For a finite p-group
G let socle(G) := (c € Z(G) | ¢ = 1) denote the socle of G. Modules

will be free Z,-modules of finite rank.

Acknowledgement
The authors would like to thank the referee(s) for helpful remarks
that lead to considerable improvement of this paper.

2. PRELIMINARY RESULTS
2.1. Pro-p modules. Modules will be left modules in the paper.

Theorem 2.1. (Diederichsen, Heller-Reiner, [4, (2.6) Theorem]) Let
G be a group of order p and M a Z,|G]-module, free as a Z,-module.
Then

M = M1 @Mp@Mp—la
where M, is a free G-module, M, is a trivial G-module and on M,_;
the equality (1+c+ -+ " HYM, 1 = {0} holds for any generator c
of G.

Let G be a p-group. A permutation lattice for G (or G-permutational
module) is a direct sum of G-modules, each of the form Z,[G/H]| for
some subgroup H of G. Note that a G-module M which is a free Z,-
module is a permutation lattice if and only if G permutes the elements
of a basis of M. In particular, when H < G and M is a G-permutation
lattice it is an H-permutation lattice.

If G = (¢) is of order p, then Theorem implies that M is a per-
mutational lattice if and only if M,_; is missing in the decomposition
for M if and only if M/(c —1)M is torsion free.

Corollary 2.2. With the assumptions of Theorem suppose that
M admits a Heller-Reiner decomposition M = M, © M,. Let L be
a free G-submodule of M such that M/L is torsion free. There is a
free Z,|G]-submodule M) containing L such that M = M, © M is a

Heller-Reiner decomposition.

Proof. Consider the canonical epimorphism of G-modules from M onto

M = M/pM. Since M/L is torsion free, one has pM N L = pL.
From this we can deduce that L is a free F,[G]-module, and so it is
injective. Therefore there is a G-invariant complement N of L in M.
Since M = M; & M, by Krull-Schmidt, N = €D, ; N; is a direct sum
of cyclic F,[G]-modules N; each of them either free or trivial.

Lift each free N; to a cyclic Z,[G]-submodule N;, and let N, :=
> icr Ni. Put M; = L@ N, and let M, = L+ N. Since the Z,-

rank of M), coincides with the [F)-dimension of M;, it must be a free
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Zy|Gl-submodule of M and it contains L. Note that M /M, = M, by
Krull-Schmidt and so one has MZ’) + M, = M.

Let us show that M; N M, = {0}. There is an idempotent e with
M, = eM and (1 —e)M = M,. Then eM] = M, N M, and therefore
M, = eM, ® (1 —e)M, = (My N M) @ (1 —e)M). Since M] is a
free Z,|G]-module it cannot have the trivial G-module as a non-trivial
direct summand. Hence M; N M, = {0} as desired and the corollary is
proved. U

2.2. Pro-p modules and pro-p groups. Let G := F'xC), be a semidi-
rect product of a finitely generated free pro-p group with a group of
order p. We need to relate the Heller-Reiner decomposition of the in-
duced Cp-module F/[F, F'], with a specific free product decomposition
of G.

Lemma 2.3. Let G be a split extension of a free pro-p group F of finite
rank by a group of order p. Then

(i) ([16]) G has a free decomposition G = ([],;
with C; = C), and all H; and H free pro-p.

Here I is finite and each C; is a representative of a conju-
gacy class of cyclic subgroups of order p in G. The subgroups
H; and H are contained in F and Cr(C;) = H,.

(ii) (J6l, Lemma 6]) Set M := F/[F,F|. Fiz iy, € I and a gen-
erator ¢ of Cy,. Then conjugation by c induces an action
of Ci, upon M. The (c)-module M admits a Heller-Reiner
decomposition M = My & M, & M,_;.

Moreover, the Z,-ranks of the three (c)-modules satisfy
rank(M,) = prank(H), rank(M,—1) = (p — 1)(|1| — 1), and
rank(M,) = ), ., rank(H;).

In particular, M is G/ F-permutational if and only if |I| =
1.

(C; x H;)) 11 H,

We shall use also the following corollary that can be extracted from

[6, Corollary 7].

Corollary 2.4. If for each i € I a basis B; of H; is given and B is any
basis of H, then | J,.; Bi[F, F]/[F, F] is a basis of My and B[F, F|/[F, F]
is a basis of the G/F-module M,. A basis of M,_; is given by {c;'¢; |
i€ l,i#ig}F, F]/|F, F].

Corollary 2.5. When C, acts as a group of automorphisms on a
finitely generated free pro-p group F' and the induced action of C, on
M = F/[F, F] allows an interpretation M = M, & M, as a permuta-
tion module, then the image of Cr(C,) under the commutator quotient
map intersects trivially with M, and has the same Zy,-rank as M;.

Proof. Lemma [2.3|implies that H := (C}, x Cp(C,)) L Fy for a free pro-
p subgroup Fy. The same lemma shows that there is a Heller-Reiner
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decomposition M; @& M), with Mj = Cp(Cp)[F, F|/[F, F]. Setting in
Corollary L := M, implies that M| N M, = {0}, as claimed. The
equality of Z,-ranks follows from Corollary , noting that [I| =1. O

Lemma 2.6. Suppose that G = Fx(t) = ((t) x Cp(t)) I Fy with
(t) = C, and Q is a t-invariant free pro-p factor of F' with Q/[Q, Q)]
a free (t)-module. Let “bar” indicate passing to the quotient modulo
(Q)r. Then Cp(t) 2 Cx(t) = Cp(t) and G = (C, x Cx(t)) 1L Fy for

some free pro-p group F.

Proof. Since @ is a free pro-p factor of F'; we find that Q N [F, F| =
[Q. Q). Therefore by Lemma[2.3|the ()-submodule L := Q[F, F|/[F, F],
being isomorphic to Q/[Q, Q], is a free (t)-submodule of M := F/[F F].
Consider a Heller-Reiner decomposition M = M; & M,. Since M /L is
a free Z,-module we can, using Corollary arrange M, such that L
becomes a direct summand of M,. Note that F/[F, F] = M/L. Since
Z,[(t)] is a local ring the Krull-Schmidt theorem applies to the Heller-
Reiner decomposition F//[F, F] = N, @ N, showing that the Z,-rank of
M coincides with the Zj,-rank of N;. Hence by Corollary [2.5] one has
Cx(t) = Cp(t) and so certainly Cp(t) = Cg(t). Moreover, Lemma [2.3
shows that G = (C, x Cx(t)) I Fy for some free pro-p group Fy. [

2.3. Helpful facts on pro-p groups.

Lemma 2.7. Let F = (AL B)IIC be a pro-p group. Then (ALl B)N
(A)r = (A) aus-

Proof. Observe that AIIB/((A)rN(ALLB)) = (AIB)(A)r/(A)r = B.
As (A)ans < (A)r N (A1l B) the second isomorphism theorem reads
(AL B(A) ) /(A1 B) 1 (A)p)/(A)aus) = (AL B)/((ATI B)
(A)p) = B. Therefore B =2 AU B/(A)ang = (AL B)/((ALD B)N
(A)r) so that the canonical epimorphism from A Il B/(A)anp onto
(AIIB)/((ALIB)N(A)F) turns out to be an isomorphism. This shows
the Lemma. U

Lemma 2.8. Let G = Fx K with F' free pro-p and K a finite p-group.
Suppose that every finite subgroup of G is F-conjugate into K. Then,
for any T < K,
(i) Ne(T) = Cp(T)xNk(T);
(11) Ewvery finite subgroup of Ng(T) is Cp(T)-conjugate to a sub-
group of Nk (T);

Proof. (i) observe that g € Ng(T') can be written as g = fk with f € F
and k € K. Then T = T9 = T'* reads modulo F as T = T* so that
k € Nk(T) and hence f € Cp(T) follows.

(ii) Let R be a finite subgroup of Ng(T') and w.l.o.g. we can assume
that it contains 7" (multiplying it by 7" if necessary). By the hypothesis
there exists f € F with R/ < K; hence 77 < K. Therefore TT7 < K
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and, since F' < G, for every element t € T one has t 't/ € KN F. As
KN F ={1} it follows that f € Cr(T) as needed. O

Our proof is based on the following results from [6] and [16] frequently
used in the paper.

Theorem 2.9. [I6] Theorem 1.2] Let K be a finite p group acting on
a free pro-p group F of finite rank. Then Cr(K) is a free pro-p factor
of F.

Theorem 2.10. [6, Proposition 14] Let G be a semidirect product of a
free pro-p group F' of finite rank with a p-group K such that every finite
subgroup 1is conjugate to a subgroup of K. Suppose that Cp(t) = {1}
holds for every torsion element t of G. Then G = K 11 Fy for a free
pro-p factor Fy.

3. HNN-EXTENSIONS

We introduce a notion of a pro-p HNN-extension as a generalization
of the construction described in [I4), page 97].

Definition 3.1. Suppose that GG is a pro-p group, and for a finite set
I there are given monomorphisms ¢; : A; — G for subgroups A; of G.
The HNN-extension G = HNN(G, A;, ¢;,i € I) is defined to be the
quotient of G IT F'(I) modulo the relations ¢;(a;) = ia;i~* for all i € I.
We call G an HNN-extension and G the base group, I the set of stable
letters, and the subgroups A; and B; := ¢;(A;) associated.

One can see that every HNN-extension in the sense of the present
definition can be obtained by successively forming HNN-extensions,
as defined in [I4], each time defining the base group to be the just
constructed group and then adding a pair of associated subgroups and
a new stable letter.

Remark 3.2. In the presentation of H we may, for every ¢ € I, choose
k; € K and replace every (A;, Z;) by (B, X;) := (A¥, Z¥) and Z; by
Zp. Then H = HNN(K, B;, X;,I).

A pro-p HNN-extension G = HNN(H, A, f,t) is proper if the natural
map from H to G is injective. Only proper pro-p HNN-extensions will
be used in this paper. .

A proper HNN-extension G := HNN(G, A;, ¢;, I) (viewing G as a
subgroup of é) satisfies a universal property as follows. Given a pro-
p group G, homomorphisms f : G — H, f; : A, =& H and a map
g : I — H such that for all i € I and all a; € A; we have f(¢i(a;)) =
9(i) fi(a;)g(i)~, there is a unique homomorphism w : G — H which
agrees with f on G, with f; on A; for every i € I and with g on [.
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Remark 3.3. Every finite subgroup of G is conjugate to a subgroup
of G. This can either be seen by interpreting G as an iterated HNN-
extension and then using [I4, Theorem 4.2(c)] or by viewing G as the
fundamental pro-p group of a graph of groups, the graph being a finite
bouquet of loops using [20, Theorem 3.10]

3.1. HNN-embedding. Theorem[3.5below is an HNN-embedding re-
sult — a refined pro-p-version of the main theorem in [7]. We first prove
it for semidirect products.

Proposition 3.4. Let G = FxK be a semidirect product of a free
pro-p group F of finite rank and a finite p-group K. Then G can be
embedded in a semidirect product G = ExK such that every finite
subgroup of G is conjugate to a subgroup of K and E is free pro-p of
finite rank.

Proof. By [16, Cor. 1.3(a)], there are only finitely many conjugacy
classes of finite subgroups that are not conjugate to a subgroup in K.
We proceed by induction on this number f = f(G,K). For f = 0
there is nothing to prove. For the inductive step it suffices to show
that G can be embedded into a semidirect product G of a finitely
generated free pro-p group F and (the same) K with less conjugacy
classes of finite subgroups that are not conjugate to a subgroup in K.
So assume that L is a finite subgroup of G not conjugate to a subgroup
of K. Let 7 : G — K be the canonical projection and ¢ = m . Put
G := HNN(G, L, ¢) and observe that it is finitely generated.

For proving that G embeds in G we need to employ [1, Theorem 1.3],
according to which G embeds in G if, and only if, the following set N
of open normal subgroups intersects trivially: namely A is the set of
all open normal subgroups U of G such that there is a chain of normal
subgroups U = Cy < -+ < C,, = G with ¢(L N C;) = ¢(L) N C; and ¢
inducing the identity on each (LC; N C;11)/C; for all i < n.

Let us show that every open normal subgroup U of G properly con-
tained in I’ must belong to A. Consider the chain Cy := U, C; := F
and Cy := G. The conditions hold in the part below C, = F since
LNF =¢(L)NF = {1}. It is also trivial that ¢(L N Cy) = ¢(L) N Cy,
since Cy = G. So we are left with showing that the homomorphism
¢ induced by ¢ on LF/F coincides with the identity. For g € G we
denote by g its image modulo F. If T € LF/F with x € L, then we

have ¢(7) = ¢(x), and since ¢ = 71, ¢(T) = 7(r). By the definition
of the projection 7, if x = fk with f € F and k € K, then n(z) = k.
Hence ¢(Z) = 7(x) = k = 7, as desired.

Note that 7 : G — K extends to G — K by the universal property
of an HNN-extension, so G is a semidirect product Ex K of its kernel
E with K. By [7, Lemma 10}, every open torsion free subgroup of G is
free pro-p. So E is free pro-p. As G is finitely generated, E is finitely
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generated. Let A be any finite subgroup of G. Then, by [14, Theorem
4.2.(c)], it is conjugate to a subgroup of the base group. O

Having established the HNN-embedding result for semidirect prod-
ucts we state and prove it for arbitrary finitely generated virtually free

pro-p groups.

Theorem 3.5. Let G be a finitely generated pro-p group possessing
an open normal free pro-p subgroup F'. Then G can be embedded in a
semidirect product G = Ex G/F such that every finite subgroup ofG
is conjugate to a subgroup of G/F and E is free pro-p. Moreover, G is
finitely generated.

Proof. Put K := G/F, and let 7: G — K denote the canonical projec-
tion. Form Gy := G II K. By the universal property of the free pro-p
product there is an epimorphism from Gy to K which agrees with 7
on G and with the identity on K. As a consequence of the Kurosh
subgroup theorem (see [I3, Theorem 9.1.9]), its kernel, say Fy, is free
pro-p and Go = Fyx K, where K is identified with its image in Gjy.
One observes that G is finitely generated, since G is. Now the result
follows from Proposition 4

3.2. Permutation extensions.

Definition 3.6. Given a finite p-group K and a finite K-set X, there
is a natural extension of the action of K to the free pro-p group F =
F(X). The semidirect product FxK will be called the permutational

extension of F by K. Now K acts on F' from the left by conjugation,
ie., k- f[F,F]:= f*[F, F).

Remark 3.7. Choosing representatives {A; | i € I} of the conjugacy
classes of all point stabilizers and letting Z; C X be a set of represen-
tatives of orbits such that K, = A; for all z € Z;, we can rewrite the
K-set X in the form J,.; K/A; x Z; with K acting on the cosets by
left multiplication and on the second factor trivially. Then G := FxK
has a presentation F(|J,c; Z;) I K modulo the relations [a;, z;] for all
z; € Z; and a; € A;, with 7 running through the finite set 1. The pre-
sentation shows that G is isomorphic to an HNN-extension in the sense
of Definition [3.1} with all ¢; the identity on the respective group A,
and with the union J;.; Z; as the set of stable letters. We shall write
G = HNN(K, A4;, Z;,i € I) — omitting the ¢; from the usual notation
of the HNN-extension.

Then M := F/[F, F| is a K-permutation module (see the explana-
tion after Theorem R.1)), i.e. M = @,; M; with M; := Z,[K/A; x Z|]

Lemma 3.8. Let ' be the normal closure of F(Uier Zi) in
G = HNN(K, A;, Z;,i € I). For every i € I choose respectively
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coset representative sets R; of K/Nk(A;) and S; of Nk (A;)/A;. Then
Cr(Ai) = Ilses, £(Zi)" and

Proof. As explained in Remark , one can view G as the quotient of
G = F(U,e; Zi) LK modulo the relations [a;, z;] for all z; € Z; and a; €
A;, with ¢ running through the finite set I. By the Kurosh subgroup
theorem (see [13, Theorem 9.1.9]) applied to the normal closure N of
F(U;e; Zi) in G we have a free pro-p decomposition

N=TTIIIIIIF@z)=

i€l reR; s€S; a€A;

The relations yield F(Z;)* = F(Z}) = F(Z;). Since for s € S;,a €
A;,z € Z; one has [a,z] = 1 if, and only if, [a®, 2] = 1 if and only if
[a,2°"'] = 1 we have

FxAi=Ax [[F@z)ya [ [IrF@) ull]]F@z)
sEeS; T‘GRi—{l} sesS; j;ﬁl keK
Set X := A; X [[,cq F(Z:)° and observe that A; < X N X9 holds for
any g € Cz(A;). Since by Theorem [13, 9.1.12] X N X" =1 for every
h ¢ X, we deduce that Cr(A;) = X. Thus we proved the first equality

that in turn implies the second one.
O

Notation 3.9. For a virtually free pro-p group G = F'x K consider
the set of subgroups L of K with Cr(L) # 1 ordered by inclusion. We
say that L < K is F-cmaximal if L is maximal with respect to this
ordering.

Lemma 3.10. Let G = HNN(K, A;, Z;, I) be a permutational exten-
sion. Then for every F-c mazimal subgroup L of K there exist elements
i €1 and k € K such that L = A¥.

Proof. As in Definition [3.1, we may consider G as an iterated HNN-
extension. By [I4, Theorem 4.3(b)], in any such HNN-extension the
group K N K” is contained in a conjugate of an associated subgroup
for any © ¢ K. Using this fact repeatedly for 1 # = € Cg(L) one
has that L < K N K* < AY for a suitable element g € G. Since
Cr(AY) # {1} and L is F-cmaximal we can conclude that L = AY
for some g € GG. On the other hand, G = F'’x K and so the canonical
epimorphism 7 : G — K yields k := 7(g) € K with L = AF. O

The goal of the rest of this subsection is to construct a certain K-
permutational free pro-p factor () of F' that will serve as a tool for the
induction step in Section
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Proposition 3.11. Let G = HNN(K, A;, Z;, 1) be a permutational ex-
tension as described in Remark . Consider a family (Bj);es of pair-
wise non-conjugate subgroups of K each being an F'-c maximal subgroup
of G. Then Q :==(Cp(B)) | j € J) = e, 1, ,er, Cr(B}) and Q is a
free pro-p factor of F', where R; denotes a set of coset representatives

of K/Ng(B;).

Proof. Lemma [3.10] and Remark allow us to identify the family
of subgroups (Bj;);ec; with a subfamily of (A;);er, i.e., to assume that
J C I so that B; = A; for all j € J. Then Lemma gives the
result. O

In the final two lemmata of this section we do not have to assume
that GG is a permutational extension.

Lemma 3.12. Let G = Fx K be a semidirect product with F' free pro-p
of finite rank and K a finite p-group. Suppose that every finite subgroup
of G is F-conjugate into K. Then, for any F-c mazimal subgroup L
of K the normalizer Ng(L) = HNN(Nk (L), L, Z1) is a permutational
extension.

Proof. Consider any t € Ng(L) — L. Then Ce,(1)(t) = {1} because
otherwise there would be f € Cp(L), f # 1, fixed by (L,t) contra-
dicting L being F-c maximal. Hence the induced action of Ng(L)/L
on Cp(L) is free. Note that Cr(L) is a free factor of F' by Theorem
2.9] and hence is finitely generated. Since all finite subgroups of G are
conjugate into K by Lemma [2.§[ii), all finite subgroups of Ng(L) are
conjugate into Nk (L). As L < K, all finite subgroups of Ng(L)/L
are conjugate into Ng(L)/L. Therefore, Theorem shows that
Cr(L)x(Nkg(L)/L) = A1l Fy for some finite p-group A and a finitely
generated free pro-p group Fy. Selecting a free pro-p base Y of Fj we
have that Ng(L)/L = HNN(Ng(L)/L,{1},Y). Therefore, for Z;, :=Y
one has Ng(L) = HNN(Ngk(L), L, Z1,), as claimed. O

Lemma 3.13. Let G = F'x K with F' free pro-p of finite rank and K a
finite p-group. Suppose that every finite subgroup of G is F-conjugate
into K. Assume further that there is N (L) < Ko< K such that Fx K,
18 a permutational extension. Then
(i) Q:=(Cr(L)* |k € K) is a K-invariant free pro-p factor of
F and the subgroup Qx K of G is a permutational extension.
(ii) rank(Q) = |Xr||K : Nkg(L)| where Xy, is any N (L)-invariant
free pro-p basis of Cr(L) on which Nk (L)/L acts freely.

Proof. By Lemma[3.12] we know that Ng(L) = HNN(Ng (L), L, Z;,) is
a permutational extension.

If Ni(L) = K, then Ng(L) = QXK is a permutational extension
and (ii) holds.
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Suppose now that Ng(L) < K. Fix coset representative sets T7,
of Ni,(L)/L, S of Ky/Nk,(L) and Ry of K/Ky. Then, as Ng(L) =
Ng, (L), we find that R := RoSTy is a set of coset representatives
of K/L and, as sets, R = Ry x S x Ty. In particular, {L™ | ro €
Ry} is a maximal set of pairwise Ky-non-conjugate K-conjugates of L.
Therefore, applying Proposition to the family {Cp(L*° | (19, s) €
Ry x S} inside the permutational extension F'x K one obtains that

Qo= [] [[CrE)
ro€Ry sES
is a free pro-p factor of F. Finally, by Lemma , Xr = Uer, 21
is an N (L)-invariant free pro-p basis of Cr(L). Then .5 Z] is a
K-invariant free pro-p basis of ()y. Therefore @)y is a K-invariant free
pro-p factor of ' and, as K = RyST,L, we find that ) = )y must
hold.
For showing (ii) it suffices to observe the equalities

rank(Q) = |Ro||S||T¢||ZL] = | XL||K : Nk (L)|.

4. LIFTING PERMUTATIONAL REPRESENTATIONS TO F'x K

A semidirect product G = Fx K, where F' is a finitely generated
free pro-p and K is a finite p-group, will be called a PE-group, if every
finite subgroup of G is conjugate into K.

For such a group conjugation of finite subgroups can then be achieved
by elements in F. By Remark [3.3] every permutational extension is a
PE-group. It is the goal of this section to show that the converse holds
as well (cf. Proposition [£.8).

4.1. Induction engine. Our next proposition describes properties of
a “minimal” counter-example G that is a PE-group but not a per-
mutational extension. These properties will be useful for the proof of
Proposition [4.8]

Proposition 4.1. Let G = FxK be a PE-group such that any PE-
group F'x K" with either |K'| < |K| or |K| = |K'| and rank(F') <
rank(F') is a permutational extension. Suppose further that there ex-
1sts a K-invariant free pro-p factor Q) of F such that Q<K is a per-
mutational extension, and let : F — F/(Q)r denote the canonical
projection. Then the following statements hold:

(i) FxK is a PE-group;
(i) For every T'< K we have Cx(T) = Cr(T).

Proof. Suppose that the proposition is false and G is a counter-example.
A series of lemmata will yield a contradiction.

Lemma 4.2. Z(G) = {1}.
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Proof. Suppose that Z(G) # {1}. Then there exists 1 # t € socle(K)
with Cp(t) = F. We claim that G/(t) satisfies (i). Indeed, when R is a
finite subgroup of G/(t) then its preimage in G, say R, is F-conjugate
into K. Hence R is F-conjugate into K/(t). By the minimality assump-
tion on |K| we can conclude that F'x(K/(t)) is a PE-group. Therefore
(i) holds.

Let T be any subgroup of K. Then, by the minimality assumption
on |K|, we must have Cx(T(t)/(t)) = Cp(T(t)/(t)). Now (ii) follows
from the equalities Cp(T) = Cp(T(t)) = Cr(T(t)/(t)).

Hence G is not a counter-example, a contradiction. Il
Lemma 4.3. Let {1} # t € socle(K). Then either Q = Cq(t) or
Co(t) = {1}.

Proof. Set Qy := Cp(t) and note that by Theorem it is a free
K-invariant factor of (). We can assume that @ > Qo > {1}, else
there is nothing to prove. By assumption )x K is a permutational
extension and so, by Lemma (ii), QoX K = Ngy (t) is a PE-group.
Since rank(Qo) < rank(F'), Qox K is a permutational extension. If
Q = F then G = K and so G cannot be a counter-example to the
statements of our proposition. Thus rank(Q)) < rank(F) and there-
fore Q/(Qo)ox K is a PE-group. Since rank(Q/(Qo)g) < rank(F)
the quotient QQ/(Qo)ox K is a permutational extension by our mini-
mality assumption on G. By Theorem there is Fy < () so that
Q = QoI Fy. Setting in Lemma 2.7 A := Qo, AIl B := @ implies that
(@o)o = (Qo)r N Q and hence Q/(Qo)ox K = (Q(Qo)r/(Qo)r) X K.
showing that the latter group is a permutational extension. Using that
rank(Qp) < rank(F') and writing “tilde” for passing to the quotient
modulo (Qg)r we can deduce that statements (i) and (ii) of the propo-

sition hold for G, i.e. GisaPE-group and Cr (t) is naturally isomorphic
to Cz(t). Since

(Q)r = (Q)r(Q0)r/(Qo)r = (F)r(Qo)r/(Qo)r = (@) (1)

the second isomorphism theorem implies that G is naturally isomorphic

to (G)/(Q)p. Then observing that rank(Q) = rank(Q(Qo)r/(Qo)r) <
rank(Q) and the pair (G, Q) satisfies all hypotheses of the proposition,
we find that G satisfies (i) and (ii) of the proposition as well. Therefore,
G cannot be a counter-example, a contradiction. U

Lemma 4.4. K cannot be cyclic of order p.

Proof. Suppose K 2 C,,. Lemma[2.3{i) shows that G = (Cp(K)x K)II
Fy with Fjy free pro-p.

Lemma [4.3| implies that either Q = Cg(K) or Co(K) = {1}. In the
first case Cr(K) = QI F and so G/(Q)¢ = (Fg x K) I Fy. Thus (i)
and (ii) hold. The second case has been treated in Lemma [2.6] i
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Lemma 4.5. If there is t € socle(K) with Cq(t) < @ then Cp(K) =
Cr(K).

Proof. Using Lemma 4.3 we find that Cg(t) = {1}. Lemma [2.6shows
that Cx(t) = Cg(t) is naturally isomorphic to Cg(t). Ast € K we have
then Cx(K) = Cp(K) and, as Cp(K) < Cp(K), we have established
the equality Cp(K) = C(K). O

Lemma 4.6. For any 1 # t € socle(K) such that () = Cg(t) the
centralizer Cg(t) is naturally isomorphic to Ca(t)/(Q)cpww)-

Proof. Applying the Kurosh subgroup theorem (see [5, Proposition
4.1]) to the subgroup Cr(t) of F' = Q I F; we get that Q = Cy(t) =
Cr(t) N@Q must be a free pro-p factor of Cr(t). Setting in Lemma
A= Q and Al B := Cg(t) implies that Cp(t) N (Q)r = Cr(t) N
(Q)cr@ so that Cp(t) = Cr(t)(Q)r/(Q)r = Cr(t)/(Cr(t) N (Q)r) =
Cr(t)/(Q)cpw- This equality gives Cz(t) = Ca(t)/(Q)cp)- O

Lemma 4.7. For any counter-ezample G statement (ii) holds.

Proof. For {1} # T < K the minimality assumption on | K | shows that
Cw(T) = Cp(T) must hold. So all we need to establish is

Cr(K) = Cp(K). (2)
Pick any 1 # ¢ € socle(K) and note that (t) < K by Lemma [£.4] By
Lemma (4.5 we may assume that @ = Cg(t).
Then by Lemmad.6) C(t) is naturally isomorphic to Ce(t)/(Q)cy (1) -
Therefore, as t € K,

Cr(K) = Copy(K) = Cop)/(@)cyp o (K- (3)

By Lemma [2.8(ii), every finite subgroup of Cg(t) is Cp(t)-conjugate
into K. By Lemma[4.2] and Theorem [2.9) rank(Cr(t)) < rank(F) and
by hypothesis Q> K is a permutational extension. Hence

Cor®/@cpw (K) = CcFu)( )I(® >F(t>/(Q) F<>
Cr(K)(Q)erw/(Q)cy (4)
Cr(K)/Cr(K) N (Q )cpn

Taking Cr(K) N (Q)cpw = Cr(K) N (Crt) N (Q)r) = Cr(K) N (Q)r

into account yields

CF(K)/CF(K) N (Q)CF(t)

raml

= Cp(K)/Cr(K)N(Q)p
= Cp(K)(Q)r/(Q)r (5)

= Cp(K)
Combining , and yields the desired equation . U

Deriving a final contradiction

In order to produce a final contradiction it suffices to establish (i)
by Lemma
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There must be a finite subgroup R of G not F-conjugate into K. If
|R| < |K]|, then taking Gy = RF and Gy to be its preimage in G we
see that Gy = F'x(GpN K) is a PE-group and |Gy N K| < |K|. Then
by the minimality assumption on |K| the group R is F-conjugate into
subgroup of K contradicting the hypothesis on R. Thus we must have
|R| = |K|. Lemma [4.4] implies that |K| > p. Conjugating R with a
suitable element in F we can achieve that {1} # RN K is a maximal
subgroup of K. Therefore, there exists 1 # ¢ € socle(R)Nsocle(K') with
R < Cg(t). Lemma implies that we can have only the following
two cases:

a): Co(t) = {1}.

B): Co(t) = Q is a free pro-p factor of Cp(t).
) Lemmal[2.6]shows that C(t) = C(t) and so C(t) = Cg(t). There-
fore there is Ry < Cg(t) with Ry = R. Now R is F-conjugate into K
since Ry = K is Cp(t)-conjugate into K by the minimality assumption
on the rank of F' (remember that rank(Cr(t)) < rank(F') by Lemma
and Theorem [2.9)).

) An application of Lemma [4.6|gives the natural isomorphism Cx(t) =
Ce(t)/(Q)cpw- Lemma [2.8(ii) implies that Cg(t) = Cp(t)xK is a
PE-group. Lemma {4.2] Theorem and the minimality assumption
on the rank of F' show that Ce(t)/(Q)cpw) = Ca(t)/(Q)cpm > K is a
PE-group. Therefore, Cx(t) = Cx(t)x K is a PE-group. In particular,
R is Cp(t)-conjugate into K, a contradiction. U

4.2. Permutational extension criterion.

Proposition 4.8. Fvery PE-group G = Fx K is a permutational ex-
tension.

Proof. Suppose that the proposition is false. Then there is a counter-
example with K of minimal order. Among all such counter-examples
fix one with rank(F') minimal. If there is no finite F-c maximal sub-
group {1} # L < K then by Theorem we find G = Fp I K =
HNN(K,1,Z,1) where Z is a base of Fp, a contradiction. There-
fore, we can fix an F-cmaximal subgroup {1} # L < K and set
Q = (Cr(L)* | k € K). Observe that Q is K-invariant.

We claim that @ is a free pro-p factor of F' and @x K is a permuta-
tional extension.

Indeed, if L < K then @) = Cr(L) and hence by Theorem Qis a
free pro-p factor of F'. Lemma shows then that Qx K = Ng(L) =
HNN(K, L, Z,{L}) is a permutational extension. If Nx(L) < K fix
any maximal subgroup Ky of K containing Nk (L). By the minimality
assumption on |K| we can conclude that F'x K, is a permutational
extension and therefore the claim follows from Lemma [3.13]1).

_Since ()x K is a permutational extension Proposition4.1jimplies that
G = G/(Q)r = F/(Q)rx K is a PE-group. As rank(F') < rank(F)
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the minimality assumption on rank(F') implies that
EZHNN(KvBh}/w]eJ) (6)

is a permutational extension.

Let S; be a set of coset representatives of Ni(B;)/B;. By Lemma
, Cr(Bj) = Hsesj F(Y;)°. Since Cyp(Bj;) is projective and, by
virtue of Proposition (ii) Cr(B;) = Cp(B,), we can lift Y, to a
subset Z; of some basis of Cp(B;).

We devise a “model”-permutational extension G that finally will turn
out to be isomorphic to G.

To this end we let A = {(B;,Y;) | j € J} U{L,Z.)}. Form G :=
HNN(K, A, Z4,(A,Z4) € A) and consider a bijection ¢ which sends,
for all j € J every B; — B;, Y; — Z;, L — L and Z; — Z;. Using
the universal property of the permutational extension G, ¢ extends to
an epimorphism from G to G.

Since G = G/(Cr(L)* | k € K)p = HNN(K, B;,Y;,j € J) and the
latter group is naturally isomorphic to G/(Z1)s, we can conclude that
ker ¢ < (Z1,)s must hold.

Set [ := ¢~ (F) and note that G = F'x K. Choose a coset represen-
tative set Ry of K/Ng (L) and observe that Proposition applied to
the family {Cz(L") | r € Ry} yields Q := [,er, C7(L"). Now choose
a coset representative set Sp, of Nk (L)/L then Lemma (3.8 shows that
Cp(L) = [1,eq F(Z3) and so we find

rank(Q) = |Z||K : L|. (7)
As has been mentioned before F'/(Q) = F/(Q)p and so establishing
rank(Q) = rank(Q) (8)

would imply G = G giving the final contradiction with G being a
permutational extension.

If Ng(L) < K, then Lemma[3.13((ii) implies (8). Otherwise L<K and
thus @) = Cp(L) = Cp(L) because Ng(L) = HNN(K, L, Z;,{L}) =
Na(L) (cf. Lemma [3.12)). Hence (8) holds in this case as well. 0

Theorem 4.9. Let G be a semidirect product of a finitely generated
free pro-p group F and a finite p-group K. The following properties
are equivalent:

(i) G is a permutational extension.
(ii) FEvery finite subgroup of G is conjugate to a subgroup of K.
(iii) M = F/[F, F] is a K-permutation module.

Proof. (i) = (ii) & (iii). If G is a permutational extension, Remark [3.3]

and Remark [3.7] together imply that G is a PE-group and that F/[F, F]
is a permutation module.
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“(ii) = (i)” has been established in Proposition [4.§|

“(ii) = (ii)”. Suppose that (iii) holds but (ii) not. Then there is a
counter-example G with |K| minimal. Since M is a K-permutational
module it is of the form

M := F/[F,F] = @ M (9)
iel
with M; = 7Z,[(K/A;) x Z;] for subgroups A; < K and some finite sets
Z;. Let R be finite subgroup of G. Note that |R| = |RF N K| and M
is also RF' N K-permutational. Therefore, if |R| < |K| then, by the
minimality assumption on | K|, R is conjugate to FFRN K contradicting
to the assumption. Therefore RF = G so that R = K.
Fix t € socle(R). Since M is a (t)-permutation module, ¢ is conjugate
into K, and so we may assume ¢ € socle(K). Let M = M, & M; be
the following Heller-Reiner decomposition for (t):

b v M= FH M.
i€l tgA; i€l teA;
By Lemma [2.3(i), F' = Cp(t) I F; for a suitable free pro-p group F;.
Corollary 2.5/implies that Cr(t)[F, F|/[F, F] intersects M, trivially and
rank(Cp(t)) = rankz M;. The natural epimorphism from Cp(t) to
Cr(t)[F, F]/|F, F] factors through the canonical K-module homomor-
phism from Cp(t)/[Cr(t), Cr(t)] to Cr(t)[F, F]/[F, F]. Therefore, by
the Krull-Schmidt theorem, Cr(t)/[Cr(t), Cr(t)] and M; are isomor-
phic K-permutation modules. As a consequence, C(t)/(t) is a permu-
tational extension by the minimality assumption on K and, therefore,

so is Cg(t). Since R < Cg(t), we may conclude that R is conjugate
into K by Remark [3.3] O

5. PROOF OF THE MAIN THEOREMS

In this section we shall use the notation and terminology of the theory
of pro-p groups acting on pro-p trees from [14]. This will also be the
main source of the references.

Theorem 5.1. Let G be an infinite finitely generated virtually free
pro-p group. Then G acts on a pro-p tree with finite vertex stabilizers.

Proof. By Theorem , G embeds into a group G = ExG /F such that
every finite subgroup of G is conjugate to a subgroup of G /F and E is
free pro-p.

By Theorem , G is a permutational extension of E and so, by
Remark [3.7] can be written as an HNN-extension HNN(G/F, A;, Z;, 1)
where the base group G/F and the associated groups in A; are all
finite. Thus G acts on a pro-p tree T' such that T / G is a bouquet and
all vertex stabilizers are finite (cf. [14, p. 89], for the situation of a
single loop). O
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Proof of Theorem[1.2,

Proof. By Theorem G acts on a pro-p tree with finite vertex sta-
bilizers. Since G is finitely generated, by [9, Theorem A], G splits as
either a non-trivial amalgamated free pro-p product with finite amalga-
mating subgroup or a non-trivial HNN-extension with finite associated
subgroups. O

Let (G,T") be a finite graph of finite p-groups then the fundamental
pro-p group II;(G,T") is just the pro-p completion of the usual fun-
damental group m(G,T") (cf. [20]). Theorem allows to deduce
Theorem (1.1} from the [9, Theorem A].

Combining Theorem [1.2] the main result in [9], and the main result
of Hillman and Schmidt in [10] we can deduce that a pro-p group of pos-
itive deficiency having a finitely generated normal subgroup of infinite
index splits into an amalgam or an HNN-extension. A pro-p group has
positive deficiency if its minimal number of generators is greater than
its number of relations, i.e. dim(H'(G,F,)) — dim(H?*(G,F,)) > 0.

Corollary 5.2. Let G be a finitely generated pro-p group of positive
deficiency and N a nontrivial finitely generated normal subgroup of G
of infinite index. Then

(i) G splits as an amalgamated free pro-p product or as an HNN-
extension over a virtually free pro-p group.

(ii) G is the fundamental pro-p group of a finite graph of virtually
free pro-p groups.

Proof. By the main result of [I0] either N is procyclic and G/N is
virtually free pro-p or N is virtually free pro-p and G/N is virtually
procyclic. Thus (i) and (ii) follow from Theorem [1.2{ and [9, Theorem
A], respectively. O

We conclude this section with an example showing that the finite
generation assumption on G in Theorem is essential.

Example 5.3. Let A and B be groups of order 2 and Gy = (A X
B,t|tAt™' = B) be a pro-2 HNN extension of A x B with associated
subgroups A and B. Note that Gy admits an automorphism of order 2
that swaps A and B and inverts t. Let G = GyxC be the holomorph.
Set Hy = (Tor(Gy)) and H = HyxC'. Since Gy is virtually free pro-2,
G and H are virtually free pro-2. The main result in [8] shows that H
does not decompose as the fundamental pro-2 group of a profinite graph
of finite 2-groups. It follows also from the proof in [8] that H does not
split as a amalgamated free pro-2 product or a pro-2 HNN-extension
over some finite subgroup.

6. AUTOMORPHISMS
The following theorem is a consequence of Theorems [3.5] and
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Theorem 6.1. Let F,, be a free pro-p group of finite rank n and P a
finite p-group of automorphisms of F'. Then there is an embedding of
holomorphs F,x P — F,,xP such that P permutes the elements of
some basis of the free pro-p group F,,.

For a finite set X the canonical embedding of the discrete free group
¢ (X) into its pro-p-completion F'(X) induces an embedding of Aut(P (X))
into Aut(F(X)). This embedding is not dense [15]. The next theorem
shows that nevertheless it induces a surjection (but not necessarily
injection, cf. [3, Proposition 25]) on the conjugacy classes of finite
groups.

Theorem 6.2. Let ' = F(X) be a finitely generated free pro-p group
and & = ®(X) be a dense abstract free subgroup of F on the same
set of generators. Suppose that A < Aut(F') is a finite p-group. Then
there exists an automorphism (8 € Aut(F) such that the conjugate AP
is contained in Aut(P).

Proof. Identifying F' with its group of inner automorphisms, we may
consider the holomorph G := F'xA as a subgroup of Aut(F’). Since
G is a finitely generated virtually free pro-p group, we may use [0,
Theorem A] in order to present G as the fundamental pro-p group of
a finite graph (G,T") of finite p-groups. By [20, Theorem 3.10], every
finite subgroup of G is conjugate to a subgroup of a vertex group, so
there exists 3y € G with A% € G(v) for some v € V(). Let m(G,T)
be the abstract fundamental group of the same graph of groups (cf.
e.g., [2]), and set @y := m(G,I') N F. Choose a basis Y of ®;. Then
Y is a basis of F(X), thus there exists a € Aut(F (X)) sending X
bijectively to Y. For 8 := fya~!, A® < Aut(®). O

Theorem 6.3. Let F' be a free pro-p group of rank n.

(i) The embedding Aut(®) < Aut(F) induces a surjection be-
tween the conjugacy classes of finite p-subgroups of Aut(®P)
and Aut(F).

(ii)) The Aut(F)-conjugacy classes of finite subgroups of Aut(F)
of order coprime to p are in one-to-one correspondence with
Aut(F/®(F))-conjugacy classes of finite subgroups of
Aut(F/®(F)) = GL,(F,) of order coprime to p.

Proof. Statement (i) is a consequence of Theorem
We begin the proof of (ii) by defining a homomorphism A : Aut(F) —
Aut(F/®(F)) setting
M) (fO(F)/@(F)) := a(f)(F)/P(F).
By [13l Lemma 4.5.5], the kernel K := ker A is a pro-p group. Moreover,
A is an epimorphism, since every automorphism o € Aut(F/®(F)) can

be lifted to an automorphism of F' (as a consequence of [I3, Lemma
4.5.5)).
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Let us first show that every p/-subgroup @ (i.e., coprime to p sub-
group) of Aut(F/®(F)) is of the form @ = AQq) for a suitable p'-
subgroup Qg of Aut(F). Indeed, A™1(Q) contains the normal p-Sylow
subgroup K and, therefore, by the profinite version of the Schur-Zassen-
haus theorem [13], 2.3.15], A™1(Q) is a split extension of the pro-p group

K by a p/-group Q, i.e., A7H(Q) = KxQy, and so Q = A\(Qy), as de-
sired.

Next suppose that A and B are p’-subgroups of Aut(F") so that \(A)
and A\(B) are conjugate in Aut(F/®(F)). Then there exists g € F' so
that AYK = BK. Now K is a closed normal p-Sylow subgroup of BK
and KNAY = KNB = {1} shows that A? and B are complements of K
in BK. Therefore, again by [13, Theorem 2.3.15], they are conjugates
in BK. Hence A and B are conjugate in G. U
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