
VIRTUALLY FREE PRO-p GROUPS

WOLFGANG HERFORT AND PAVEL ZALESSKII

Abstract. We prove that in the category of pro-p groups any
finitely generated group G with a free open subgroup splits either
as an amalgamated free product or as an HNN-extension over a
finite p-group. From this result we deduce that such a pro-p group
is the pro-p completion of a fundamental group of a finite graph of
finite p-groups.

1. Introduction

Let p be a prime number, and let G be a pro-p group containing an
open free pro-p subgroup F . If G is torsion free, then, according to the
celebrated theorem of Serre established in [17], G itself is free pro-p.

The main objective of the paper is to give a description of virtually
free pro-p groups without the assumption of torsion freeness.

Theorem 1.1. Let G be a finitely generated pro-p group with a free
open subgroup F . Then G is the fundamental pro-p group of a finite
graph of finite p-groups of order bounded by |G : F |.

This theorem is the pro-p analogue of the description of finitely gen-
erated virtually free discrete groups proved by Karrass, Pietrovski and
Solitar in [11]. In the characterization of discrete virtually free groups
Stallings’ theory of ends played a crucial role. In fact the proof of the
theorem of Karrass, Pietrovski and Solitar uses the celebrated theorem
of Stallings proved in [18] according to which every finitely generated
virtually free group splits as an amalgamated free product or HNN-
extension over a finite group, respectively. The theory of ends for pro-p
groups has been initiated in [12]. However, it is not known whether
an analogue of Stallings’ Theorem holds in this context. We will prove
Theorem 1.1 and such an analogue for finitely generated virtually free
pro-p groups using purely combinatorial pro-p group methods combined
with results on p-adic representations of finite p-groups.
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Theorem 1.2. Let G be a finitely generated virtually free pro-p group.
Then G is either a non-trivial amalgamated free pro-p product with fi-
nite amalgamating subgroup or a non-trivial HNN-extension with finite
associated subgroups.

As a consequence of Theorem 1.1 we obtain that a finitely generated
virtually free pro-p group is the pro-p completion of a virtually free
discrete group. However, the discrete result is not used (and cannot be
used) in the proof.

V.A.Romankov proved in [15] that the automorphism group of a

finitely generated free pro-p group Aut(F̂n) of rank n ≥ 2, is infinitely
generated. Therefore, one has that, despite the fact that the auto-
morphism group Aut(Fn) of a free group of rank n embeds naturally

in Aut(F̂n), it is by no means densely embedded there! Nevertheless,
Theorem 1.1 allows us to show that, surprisingly, the number of con-

jugacy classes of finite p-subgroups in Aut(F̂n) is not greater than the
corresponding number for Aut(Fn).

Note that the assumption of finite generation in Theorem 1.1 is es-
sential: there is an example of a split extension H = F×D4 of a free
pro-2 group F of countable rank which cannot be represented as the
fundamental pro-2 group of a profinite graph of finite 2-groups (see
Example 5.3).

The line of proof is as follows. In Section 3 we use a pro-p HNN-
extension to embed a finitely generated virtually free pro-p group G
in a split extension E = F×K of a free pro-p group F and a finite p-
group K with a unique conjugacy class of maximal finite subgroups. In
Section 4 we prove using an inductive argument the following theorem
which connects the structure of any such group F×K with its action
on M := F/[F, F ].

Theorem 1.3. Let E be a semidirect product E = F×K of a free pro-
p group F of finite rank and a finite p-group K. Then the K-module
M = F/[F, F ] is permutational if and only if F posesses a K-invariant
basis.

This theorem gives an HNN-extension structure on E with finite
base group. In particular, E and, therefore, G acts on a pro-p tree
with finite vertex stabilizers. Using this, [6, Proposition 14], and a
result from [9] on pro-p groups acting on trees we prove in Section 5
Theorems 1.1 and 1.2. Finally, Section 6 deals with automorphisms of
a free pro-p group.

Basic material on profinite groups can be found in [19, 13]. Through-
out the paper we make the following standard assumptions. Subgroups
are closed and homomorphisms are continuous. For elements x, y in
a group G we will write yx := xyx−1 and [x, y] := xyx−1y−1. For a
subset A ⊆ G we denote by (A)G the normal closure of A in G, i.e.,
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the smallest closed normal subgroup of G containing A. For profinite
graphs we will use (standard) notations which can be found in [14].
The Frattini subgroup of G will be denoted by Φ(G), and Tor(G) will
stand for the subset of elements of finite order in G. For a finite p-group
G let socle(G) := 〈c ∈ Z(G) | cp = 1〉 denote the socle of G. Modules
will be free Zp-modules of finite rank.
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The authors would like to thank the referee(s) for helpful remarks

that lead to considerable improvement of this paper.

2. Preliminary results

2.1. Pro-p modules. Modules will be left modules in the paper.

Theorem 2.1. (Diederichsen, Heller-Reiner, [4, (2.6) Theorem]) Let
G be a group of order p and M a Zp[G]-module, free as a Zp-module.
Then

M = M1 ⊕Mp ⊕Mp−1,

where Mp is a free G-module, M1 is a trivial G-module and on Mp−1
the equality (1 + c + · · · + cp−1)Mp−1 = {0} holds for any generator c
of G.

Let G be a p-group. A permutation lattice for G (or G-permutational
module) is a direct sum of G-modules, each of the form Zp[G/H] for
some subgroup H of G. Note that a G-module M which is a free Zp-
module is a permutation lattice if and only if G permutes the elements
of a basis of M . In particular, when H ≤ G and M is a G-permutation
lattice it is an H-permutation lattice.

If G = 〈c〉 is of order p, then Theorem 2.1 implies that M is a per-
mutational lattice if and only if Mp−1 is missing in the decomposition
for M if and only if M/(c− 1)M is torsion free.

Corollary 2.2. With the assumptions of Theorem 2.1 suppose that
M admits a Heller-Reiner decomposition M = M1 ⊕ Mp. Let L be
a free G-submodule of M such that M/L is torsion free. There is a
free Zp[G]-submodule M ′

p containing L such that M = M1 ⊕M ′
p is a

Heller-Reiner decomposition.

Proof. Consider the canonical epimorphism of G-modules from M onto
M := M/pM . Since M/L is torsion free, one has pM ∩ L = pL.
From this we can deduce that L is a free Fp[G]-module, and so it is
injective. Therefore there is a G-invariant complement N of L in M .
Since M = M1 ⊕Mp by Krull-Schmidt, N =

⊕
i∈I N i is a direct sum

of cyclic Fp[G]-modules Ni each of them either free or trivial.
Lift each free N i to a cyclic Zp[G]-submodule Ni, and let Np :=∑
i∈I Ni. Put M

′
p := L ⊕ N , and let M ′

p := L + N . Since the Zp-
rank of M ′

p coincides with the Fp-dimension of M
′
p, it must be a free
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Zp[G]-submodule of M and it contains L. Note that M/M ′
p
∼= M1 by

Krull-Schmidt and so one has M ′
p +M1 = M .

Let us show that M1 ∩M ′
p = {0}. There is an idempotent e with

M1 = eM and (1 − e)M = Mp. Then eM ′
p = M1 ∩M ′

p and therefore
M ′

p = eM ′
p ⊕ (1 − e)M ′

p = (M1 ∩ M ′
p) ⊕ (1 − e)M ′

p. Since M ′
p is a

free Zp[G]-module it cannot have the trivial G-module as a non-trivial
direct summand. Hence M1 ∩M ′

p = {0} as desired and the corollary is
proved. �

2.2. Pro-p modules and pro-p groups. LetG := F×Cp be a semidi-
rect product of a finitely generated free pro-p group with a group of
order p. We need to relate the Heller-Reiner decomposition of the in-
duced Cp-module F/[F, F ], with a specific free product decomposition
of G.

Lemma 2.3. Let G be a split extension of a free pro-p group F of finite
rank by a group of order p. Then

(i) ([16]) G has a free decomposition G =
(∐

i∈I(Ci ×Hi)
)
qH,

with Ci ∼= Cp and all Hi and H free pro-p.
Here I is finite and each Ci is a representative of a conju-

gacy class of cyclic subgroups of order p in G. The subgroups
Hi and H are contained in F and CF (Ci) = Hi.

(ii) ([6, Lemma 6]) Set M := F/[F, F ]. Fix i0 ∈ I and a gen-
erator c of Ci0. Then conjugation by c induces an action
of Ci0 upon M . The 〈c〉-module M admits a Heller-Reiner
decomposition M = M1 ⊕Mp ⊕Mp−1.

Moreover, the Zp-ranks of the three 〈c〉-modules satisfy
rank(Mp) = p rank(H), rank(Mp−1) = (p − 1)(|I| − 1), and
rank(M1) =

∑
i∈I rank(Hi).

In particular, M is G/F -permutational if and only if |I| =
1.

We shall use also the following corollary that can be extracted from
[6, Corollary 7].

Corollary 2.4. If for each i ∈ I a basis Bi of Hi is given and B is any
basis of H, then

⋃
i∈I Bi[F, F ]/[F, F ] is a basis of M1 and B[F, F ]/[F, F ]

is a basis of the G/F -module Mp. A basis of Mp−1 is given by {c−1i0 ci |
i ∈ I, i 6= i0}[F, F ]/[F, F ].

Corollary 2.5. When Cp acts as a group of automorphisms on a
finitely generated free pro-p group F and the induced action of Cp on
M := F/[F, F ] allows an interpretation M = M1 ⊕Mp as a permuta-
tion module, then the image of CF (Cp) under the commutator quotient
map intersects trivially with Mp and has the same Zp-rank as M1.

Proof. Lemma 2.3 implies that H := (Cp×CF (Cp))qF0 for a free pro-
p subgroup F0. The same lemma shows that there is a Heller-Reiner
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decomposition M ′
1 ⊕M ′

p with M ′
1 = CF (Cp)[F, F ]/[F, F ]. Setting in

Corollary 2.2 L := Mp implies that M ′
1 ∩Mp = {0}, as claimed. The

equality of Zp-ranks follows from Corollary 2.4, noting that |I| = 1. �

Lemma 2.6. Suppose that G = F×〈t〉 = (〈t〉 × CF (t)) q F0 with
〈t〉 ∼= Cp and Q is a t-invariant free pro-p factor of F with Q/[Q,Q]
a free 〈t〉-module. Let “bar” indicate passing to the quotient modulo

(Q)F . Then CF (t) ∼= CF (t) = CF (t) and G ∼= (Cp × CF (t)) q F1 for
some free pro-p group F1.

Proof. Since Q is a free pro-p factor of F , we find that Q ∩ [F, F ] =
[Q,Q]. Therefore by Lemma 2.3 the 〈t〉-submodule L := Q[F, F ]/[F, F ],
being isomorphic toQ/[Q,Q], is a free 〈t〉-submodule ofM := F/[F, F ].
Consider a Heller-Reiner decomposition M = M1 ⊕Mp. Since M/L is
a free Zp-module we can, using Corollary 2.2, arrange Mp such that L
becomes a direct summand of Mp. Note that F/[F , F ] = M/L. Since
Zp[〈t〉] is a local ring the Krull-Schmidt theorem applies to the Heller-
Reiner decomposition F/[F , F ] = N1⊕Np showing that the Zp-rank of
M1 coincides with the Zp-rank of N1. Hence by Corollary 2.5, one has

CF (t) ∼= CF (t) and so certainly CF (t) = CF (t). Moreover, Lemma 2.3
shows that G ∼= (Cp × CF (t))q F1 for some free pro-p group F1. �

2.3. Helpful facts on pro-p groups.

Lemma 2.7. Let F = (AqB)qC be a pro-p group. Then (AqB)∩
(A)F = (A)AqB.

Proof. Observe that AqB/((A)F ∩(AqB)) ∼= (AqB)(A)F/(A)F ∼= B.
As (A)AqB ≤ (A)F ∩ (A q B) the second isomorphism theorem reads
(A q B/(A)AqB)/(((A q B) ∩ (A)F )/(A)AqB) ∼= (A q B)/((A q B) ∩
(A)F ) ∼= B. Therefore B ∼= A q B/(A)AqB ∼= (A q B)/((A q B) ∩
(A)F ) so that the canonical epimorphism from A q B/(A)AqB onto
(AqB)/((AqB)∩ (A)F ) turns out to be an isomorphism. This shows
the Lemma. �

Lemma 2.8. Let G = F×K with F free pro-p and K a finite p-group.
Suppose that every finite subgroup of G is F -conjugate into K. Then,
for any T ≤ K,

(i) NG(T ) = CF (T )×NK(T );

(ii) Every finite subgroup of NG(T ) is CF (T )-conjugate to a sub-
group of NK(T );

Proof. (i) observe that g ∈ NG(T ) can be written as g = fk with f ∈ F
and k ∈ K. Then T = T g = T fk reads modulo F as T = T k so that
k ∈ NK(T ) and hence f ∈ CF (T ) follows.

(ii) Let R be a finite subgroup of NG(T ) and w.l.o.g. we can assume
that it contains T (multiplying it by T if necessary). By the hypothesis
there exists f ∈ F with Rf ≤ K; hence T f ≤ K. Therefore TT f ≤ K
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and, since F / G, for every element t ∈ T one has t−1tf ∈ K ∩ F . As
K ∩ F = {1} it follows that f ∈ CF (T ) as needed. �

Our proof is based on the following results from [6] and [16] frequently
used in the paper.

Theorem 2.9. [16, Theorem 1.2] Let K be a finite p group acting on
a free pro-p group F of finite rank. Then CF (K) is a free pro-p factor
of F .

Theorem 2.10. [6, Proposition 14] Let G be a semidirect product of a
free pro-p group F of finite rank with a p-group K such that every finite
subgroup is conjugate to a subgroup of K. Suppose that CF (t) = {1}
holds for every torsion element t of G. Then G = K q F0 for a free
pro-p factor F0.

3. HNN-extensions

We introduce a notion of a pro-p HNN-extension as a generalization
of the construction described in [14, page 97].

Definition 3.1. Suppose that G is a pro-p group, and for a finite set
I there are given monomorphisms φi : Ai → G for subgroups Ai of G.
The HNN-extension G̃ := HNN(G,Ai, φi, i ∈ I) is defined to be the
quotient of Gq F (I) modulo the relations φi(ai) = iaii

−1 for all i ∈ I.
We call G̃ an HNN-extension and G the base group, I the set of stable
letters, and the subgroups Ai and Bi := φi(Ai) associated.

One can see that every HNN-extension in the sense of the present
definition can be obtained by successively forming HNN-extensions,
as defined in [14], each time defining the base group to be the just
constructed group and then adding a pair of associated subgroups and
a new stable letter.

Remark 3.2. In the presentation of H we may, for every i ∈ I, choose
ki ∈ K and replace every (Ai, Zi) by (Bi, Xi) := (Akii , Z

ki
i ) and Zi by

ZB. Then H = HNN(K,Bi, Xi, I).

A pro-p HNN-extension G = HNN(H,A, f, t) is proper if the natural
map from H to G is injective. Only proper pro-p HNN-extensions will
be used in this paper.

A proper HNN-extension G̃ := HNN(G,Ai, φi, I) (viewing G as a
subgroup of G̃) satisfies a universal property as follows. Given a pro-
p group G, homomorphisms f : G → H, fi : Ai → H and a map
g : I → H such that for all i ∈ I and all ai ∈ Ai we have f(φi(ai)) =
g(i)fi(ai)g(i)−1, there is a unique homomorphism ω : G̃ → H which
agrees with f on G, with fi on Ai for every i ∈ I and with g on I.
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Remark 3.3. Every finite subgroup of G̃ is conjugate to a subgroup
of G. This can either be seen by interpreting G̃ as an iterated HNN-
extension and then using [14, Theorem 4.2(c)] or by viewing G̃ as the
fundamental pro-p group of a graph of groups, the graph being a finite
bouquet of loops using [20, Theorem 3.10]

3.1. HNN-embedding. Theorem 3.5 below is an HNN-embedding re-
sult – a refined pro-p-version of the main theorem in [7]. We first prove
it for semidirect products.

Proposition 3.4. Let G = F×K be a semidirect product of a free
pro-p group F of finite rank and a finite p-group K. Then G can be
embedded in a semidirect product G̃ = E×K such that every finite
subgroup of G̃ is conjugate to a subgroup of K and E is free pro-p of
finite rank.

Proof. By [16, Cor. 1.3(a)], there are only finitely many conjugacy
classes of finite subgroups that are not conjugate to a subgroup in K.
We proceed by induction on this number f = f(G,K). For f = 0
there is nothing to prove. For the inductive step it suffices to show
that G can be embedded into a semidirect product G̃ of a finitely
generated free pro-p group E and (the same) K with less conjugacy
classes of finite subgroups that are not conjugate to a subgroup in K.
So assume that L is a finite subgroup of G not conjugate to a subgroup
of K. Let π : G −→ K be the canonical projection and φ = π|L. Put

G̃ := HNN(G,L, φ) and observe that it is finitely generated.
For proving that G embeds in G̃ we need to employ [1, Theorem 1.3],

according to which G embeds in G̃ if, and only if, the following set N
of open normal subgroups intersects trivially: namely N is the set of
all open normal subgroups U of G such that there is a chain of normal
subgroups U = C0 < · · · < Cn = G with φ(L ∩ Ci) = φ(L) ∩ Ci and φ
inducing the identity on each (LCi ∩ Ci+1)/Ci for all i < n.

Let us show that every open normal subgroup U of G properly con-
tained in F must belong to N . Consider the chain C0 := U , C1 := F
and C2 := G. The conditions hold in the part below C1 = F since
L∩ F = φ(L)∩ F = {1}. It is also trivial that φ(L∩C2) = φ(L)∩C2,
since C2 = G. So we are left with showing that the homomorphism
φ induced by φ on LF/F coincides with the identity. For g ∈ G we
denote by g its image modulo F . If x ∈ LF/F with x ∈ L, then we

have φ(x) = φ(x), and since φ = π|L, φ(x) = π(x). By the definition
of the projection π, if x = fk with f ∈ F and k ∈ K, then π(x) = k.

Hence φ(x) = π(x) = k = x, as desired.
Note that π : G −→ K extends to G̃ −→ K by the universal property

of an HNN-extension, so G̃ is a semidirect product E×K of its kernel
E with K. By [7, Lemma 10], every open torsion free subgroup of G̃ is
free pro-p. So E is free pro-p. As G̃ is finitely generated, E is finitely
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generated. Let A be any finite subgroup of G̃. Then, by [14, Theorem
4.2.(c)], it is conjugate to a subgroup of the base group. �

Having established the HNN-embedding result for semidirect prod-
ucts we state and prove it for arbitrary finitely generated virtually free
pro-p groups.

Theorem 3.5. Let G be a finitely generated pro-p group possessing
an open normal free pro-p subgroup F . Then G can be embedded in a
semidirect product G̃ = E×G/F such that every finite subgroup of G̃
is conjugate to a subgroup of G/F and E is free pro-p. Moreover, G̃ is
finitely generated.

Proof. Put K := G/F , and let π : G→ K denote the canonical projec-
tion. Form G0 := G qK. By the universal property of the free pro-p
product there is an epimorphism from G0 to K which agrees with π
on G and with the identity on K. As a consequence of the Kurosh
subgroup theorem (see [13, Theorem 9.1.9]), its kernel, say F0, is free
pro-p and G0 = F0×K, where K is identified with its image in G0.
One observes that G0 is finitely generated, since G is. Now the result
follows from Proposition 3.4. �

3.2. Permutation extensions.

Definition 3.6. Given a finite p-group K and a finite K-set X, there
is a natural extension of the action of K to the free pro-p group F̃ =
F (X). The semidirect product F̃×K will be called the permutational
extension of F̃ by K. Now K acts on F̃ from the left by conjugation,
i.e., k · f [F̃ , F̃ ] := fk[F̃ , F̃ ].

Remark 3.7. Choosing representatives {Ai | i ∈ I} of the conjugacy
classes of all point stabilizers and letting Zi ⊆ X be a set of represen-
tatives of orbits such that Kz = Ai for all z ∈ Zi, we can rewrite the
K-set X in the form

⋃
i∈I K/Ai × Zi with K acting on the cosets by

left multiplication and on the second factor trivially. Then G̃ := F̃×K
has a presentation F (

⋃
i∈I Zi) qK modulo the relations [ai, zi] for all

zi ∈ Zi and ai ∈ Ai, with i running through the finite set I. The pre-
sentation shows that G̃ is isomorphic to an HNN-extension in the sense
of Definition 3.1, with all φi the identity on the respective group Ai,
and with the union

⋃
i∈I Zi as the set of stable letters. We shall write

G̃ = HNN(K,Ai, Zi, i ∈ I) – omitting the φi from the usual notation
of the HNN-extension.

Then M := F̃ /[F̃ , F̃ ] is a K-permutation module (see the explana-
tion after Theorem 2.1), i.e. M =

⊕
i∈IMi with Mi := Zp[K/Ai × Zi]

Lemma 3.8. Let F̃ be the normal closure of F (
⋃
i∈I Zi) in

G̃ = HNN(K,Ai, Zi, i ∈ I). For every i ∈ I choose respectively



VIRTUALLY FREE PRO-p GROUPS 9

coset representative sets Ri of K/NK(Ai) and Si of NK(Ai)/Ai. Then
CF (Ai) =

∐
s∈Si

F (Zi)
s and

F̃ =
∐
i∈I

∐
r∈Ri

CF (Ai)
r.

Proof. As explained in Remark 3.7, one can view G̃ as the quotient of
G := F (

⋃
i∈I Zi)qK modulo the relations [ai, zi] for all zi ∈ Zi and ai ∈

Ai, with i running through the finite set I. By the Kurosh subgroup
theorem (see [13, Theorem 9.1.9]) applied to the normal closure N of
F (
⋃
i∈I Zi) in G we have a free pro-p decomposition

N =
∐
i∈I

∐
r∈Ri

∐
s∈Si

∐
a∈Ai

F (Zi)
asr.

The relations yield F (Zi)
a = F (Za

i ) = F (Zi). Since for s ∈ Si, a ∈
Ai, z ∈ Zi one has [a, z] = 1 if, and only if, [as, z] = 1 if and only if

[a, zs
−1

] = 1 we have

F̃×Ai = (Ai ×
∐
s∈Si

F (Zi)
s)q

∐
r∈Ri−{1}

∐
s∈Si

F (Zi)
sr q

∐
j 6=i

∐
k∈K

F (Zj)
k.

Set X := Ai ×
∐

s∈Si
F (Zi)

s and observe that Ai ≤ X ∩ Xg holds for

any g ∈ CF̃ (Ai). Since by Theorem [13, 9.1.12] X ∩Xh = 1 for every
h 6∈ X, we deduce that CF (Ai) = X. Thus we proved the first equality
that in turn implies the second one.

�

Notation 3.9. For a virtually free pro-p group G = F×K consider
the set of subgroups L of K with CF (L) 6= 1 ordered by inclusion. We
say that L ≤ K is F -c maximal if L is maximal with respect to this
ordering.

Lemma 3.10. Let G = HNN(K,Ai, Zi, I) be a permutational exten-
sion. Then for every F -c maximal subgroup L of K there exist elements
i ∈ I and k ∈ K such that L = Aki .

Proof. As in Definition 3.1, we may consider G as an iterated HNN-
extension. By [14, Theorem 4.3(b)], in any such HNN-extension the
group K ∩ Kx is contained in a conjugate of an associated subgroup
for any x 6∈ K. Using this fact repeatedly for 1 6= x ∈ CF (L) one
has that L ≤ K ∩ Kx ≤ Agi for a suitable element g ∈ G. Since
CF (Agi ) 6= {1} and L is F -c maximal we can conclude that L = Agi
for some g ∈ G. On the other hand, G = F×K and so the canonical
epimorphism π : G→ K yields k := π(g) ∈ K with L = Aki . �

The goal of the rest of this subsection is to construct a certain K-
permutational free pro-p factor Q of F that will serve as a tool for the
induction step in Section 4.
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Proposition 3.11. Let G = HNN(K,Ai, Zi, I) be a permutational ex-
tension as described in Remark 3.7. Consider a family (Bj)j∈J of pair-
wise non-conjugate subgroups of K each being an F -c maximal subgroup
of G. Then Q := 〈CF (Bj) | j ∈ J〉 =

∐
j∈J
∐

rj∈Rj
CF (B

rj
j ) and Q is a

free pro-p factor of F , where Rj denotes a set of coset representatives
of K/NK(Bj).

Proof. Lemma 3.10 and Remark 3.2 allow us to identify the family
of subgroups (Bj)j∈J with a subfamily of (Ai)i∈I , i.e., to assume that
J ⊆ I so that Bj = Aj for all j ∈ J . Then Lemma 3.8 gives the
result. �

In the final two lemmata of this section we do not have to assume
that G is a permutational extension.

Lemma 3.12. Let G = F×K be a semidirect product with F free pro-p
of finite rank and K a finite p-group. Suppose that every finite subgroup
of G is F -conjugate into K. Then, for any F -c maximal subgroup L
of K the normalizer NG(L) = HNN(NK(L), L, ZL) is a permutational
extension.

Proof. Consider any t ∈ NK(L) − L. Then CCF (L)(t) = {1} because
otherwise there would be f ∈ CF (L), f 6= 1, fixed by 〈L, t〉 contra-
dicting L being F -c maximal. Hence the induced action of NK(L)/L
on CF (L) is free. Note that CF (L) is a free factor of F by Theorem
2.9 and hence is finitely generated. Since all finite subgroups of G are
conjugate into K by Lemma 2.8(ii), all finite subgroups of NG(L) are
conjugate into NK(L). As L ≤ K, all finite subgroups of NG(L)/L
are conjugate into NK(L)/L. Therefore, Theorem 2.10 shows that
CF (L)×(NK(L)/L) = A q F0 for some finite p-group A and a finitely
generated free pro-p group F0. Selecting a free pro-p base Y of F0 we
have that NG(L)/L ∼= HNN(NK(L)/L, {1}, Y ). Therefore, for ZL := Y
one has NG(L) = HNN(NK(L), L, ZL), as claimed. �

Lemma 3.13. Let G = F×K with F free pro-p of finite rank and K a
finite p-group. Suppose that every finite subgroup of G is F -conjugate
into K. Assume further that there is NK(L) ≤ K0/K such that F×K0

is a permutational extension. Then

(i) Q := 〈CF (L)k | k ∈ K〉 is a K-invariant free pro-p factor of
F and the subgroup Q×K of G is a permutational extension.

(ii) rank(Q) = |XL||K : NK(L)| where XL is any NK(L)-invariant
free pro-p basis of CF (L) on which NK(L)/L acts freely.

Proof. By Lemma 3.12, we know that NG(L) = HNN(NK(L), L, ZL) is
a permutational extension.

If NK(L) = K, then NG(L) = Q×K is a permutational extension
and (ii) holds.



VIRTUALLY FREE PRO-p GROUPS 11

Suppose now that NK(L) < K. Fix coset representative sets TL
of NK0(L)/L, S of K0/NK0(L) and R0 of K/K0. Then, as NK(L) =
NK0(L), we find that R := R0STL is a set of coset representatives
of K/L and, as sets, R = R0 × S × TL. In particular, {Lr0 | r0 ∈
R0} is a maximal set of pairwise K0-non-conjugate K-conjugates of L.
Therefore, applying Proposition 3.11 to the family {CF (Lsr0 | (r0, s) ∈
R0 × S} inside the permutational extension F×K0 one obtains that

Q0 :=
∐
r0∈R0

∐
s∈S

CF (Lsr0)

is a free pro-p factor of F . Finally, by Lemma 3.8, XL :=
⋃
t∈TL Z

t
L

is an NK(L)-invariant free pro-p basis of CF (L). Then
⋃
r∈R Z

r
L is a

K-invariant free pro-p basis of Q0. Therefore Q0 is a K-invariant free
pro-p factor of F and, as K = R0STLL, we find that Q = Q0 must
hold.

For showing (ii) it suffices to observe the equalities

rank(Q) = |R0||S||TL||ZL| = |XL||K : NK(L)|.
�

4. Lifting permutational representations to F×K

A semidirect product G = F×K, where F is a finitely generated
free pro-p and K is a finite p-group, will be called a PE-group, if every
finite subgroup of G is conjugate into K.

For such a group conjugation of finite subgroups can then be achieved
by elements in F . By Remark 3.3, every permutational extension is a
PE-group. It is the goal of this section to show that the converse holds
as well (cf. Proposition 4.8).

4.1. Induction engine. Our next proposition describes properties of
a “minimal” counter-example G that is a PE-group but not a per-
mutational extension. These properties will be useful for the proof of
Proposition 4.8.

Proposition 4.1. Let G = F×K be a PE-group such that any PE-
group F ′×K ′ with either |K ′| < |K| or |K| = |K ′| and rank(F ′) <
rank(F ) is a permutational extension. Suppose further that there ex-
ists a K-invariant free pro-p factor Q of F such that Q×K is a per-
mutational extension, and let ¯ : F → F/(Q)F denote the canonical
projection. Then the following statements hold:

(i) F×K is a PE-group;

(ii) For every T ≤ K we have CF (T ) = CF (T ).

Proof. Suppose that the proposition is false andG is a counter-example.
A series of lemmata will yield a contradiction.

Lemma 4.2. Z(G) = {1}.
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Proof. Suppose that Z(G) 6= {1}. Then there exists 1 6= t ∈ socle(K)
with CF (t) = F . We claim that G/〈t〉 satisfies (i). Indeed, when R is a
finite subgroup of G/〈t〉 then its preimage in G, say R̃, is F -conjugate
into K. Hence R is F -conjugate into K/〈t〉. By the minimality assump-
tion on |K| we can conclude that F×(K/〈t〉) is a PE-group. Therefore
(i) holds.

Let T be any subgroup of K. Then, by the minimality assumption
on |K|, we must have CF (T 〈t〉/〈t〉) = CF (T 〈t〉/〈t〉). Now (ii) follows
from the equalities CF (T ) = CF (T 〈t〉) = CF (T 〈t〉/〈t〉).

Hence G is not a counter-example, a contradiction. �

Lemma 4.3. Let {1} 6= t ∈ socle(K). Then either Q = CQ(t) or
CQ(t) = {1}.

Proof. Set Q0 := CQ(t) and note that by Theorem 2.9 it is a free
K-invariant factor of Q. We can assume that Q > Q0 > {1}, else
there is nothing to prove. By assumption Q×K is a permutational
extension and so, by Lemma 2.8(ii), Q0×K = NQ×K(t) is a PE-group.
Since rank(Q0) < rank(F ), Q0×K is a permutational extension. If
Q = F then G = K and so G cannot be a counter-example to the
statements of our proposition. Thus rank(Q) < rank(F ) and there-
fore Q/(Q0)Q×K is a PE-group. Since rank(Q/(Q0)Q) < rank(F )
the quotient Q/(Q0)Q×K is a permutational extension by our mini-
mality assumption on G. By Theorem 2.9 there is F0 ≤ Q so that
Q = Q0qF0. Setting in Lemma 2.7 A := Q0, AqB := Q implies that
(Q0)Q = (Q0)F ∩ Q and hence Q/(Q0)Q×K ∼= (Q(Q0)F/(Q0)F )×K,
showing that the latter group is a permutational extension. Using that
rank(Q0) < rank(F ) and writing “tilde” for passing to the quotient
modulo (Q0)F we can deduce that statements (i) and (ii) of the propo-

sition hold for G̃, i.e. G̃ is a PE-group and C̃F (t) is naturally isomorphic
to CF̃ (t̃). Since

(̃Q)F = (Q)F (Q0)F/(Q0)F = (F0)F (Q0)F/(Q0)F = (Q̃)F̃ (1)

the second isomorphism theorem implies that Ḡ is naturally isomorphic
to (G̃)/(Q̃)F̃ . Then observing that rank(Q̃) = rank(Q(Q0)F/(Q0)F ) <

rank(Q) and the pair (G̃, Q̃) satisfies all hypotheses of the proposition,
we find that Ḡ satisfies (i) and (ii) of the proposition as well. Therefore,
G cannot be a counter-example, a contradiction. �

Lemma 4.4. K cannot be cyclic of order p.

Proof. Suppose K ∼= Cp. Lemma 2.3(i) shows that G = (CF (K)×K)q
F0 with F0 free pro-p.

Lemma 4.3 implies that either Q = CQ(K) or CQ(K) = {1}. In the
first case CF (K) = Qq FQ and so G/(Q)G ∼= (FQ×K)q F0. Thus (i)
and (ii) hold. The second case has been treated in Lemma 2.6. �
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Lemma 4.5. If there is t ∈ socle(K) with CQ(t) < Q then CF (K) =
CF (K).

Proof. Using Lemma 4.3 we find that CQ(t) = {1}. Lemma 2.6 shows

that CG(t) = CG(t) is naturally isomorphic to CG(t). As t ∈ K we have

then CF (K) ∼= CF (K) and, as CF (K) ≤ CF (K), we have established

the equality CF (K) = CF (K). �

Lemma 4.6. For any 1 6= t ∈ socle(K) such that Q = CQ(t) the
centralizer CG(t) is naturally isomorphic to CG(t)/(Q)CF (t).

Proof. Applying the Kurosh subgroup theorem (see [5, Proposition
4.1]) to the subgroup CF (t) of F = Q q FQ we get that Q = CQ(t) =
CF (t) ∩Q must be a free pro-p factor of CF (t). Setting in Lemma 2.7
A := Q and A q B := CF (t) implies that CF (t) ∩ (Q)F = CF (t) ∩
(Q)CF (t) so that CF (t) = CF (t)(Q)F/(Q)F ∼= CF (t)/(CF (t) ∩ (Q)F ) ∼=
CF (t)/(Q)CF (t). This equality gives CG(t) ∼= CG(t)/(Q)CF (t). �

Lemma 4.7. For any counter-example G statement (ii) holds.

Proof. For {1} 6= T < K the minimality assumption on |K| shows that

CF (T ) = CF (T ) must hold. So all we need to establish is

CF (K) = CF (K). (2)

Pick any 1 6= t ∈ socle(K) and note that 〈t〉 < K by Lemma 4.4. By
Lemma 4.5 we may assume that Q = CQ(t).

Then by Lemma 4.6, CG(t) is naturally isomorphic to CG(t)/(Q)CF (t).
Therefore, as t ∈ K,

CF (K) = CCF (t)(K) ∼= CCF (t)/(Q)CF (t)
(K). (3)

By Lemma 2.8(ii), every finite subgroup of CG(t) is CF (t)-conjugate
into K. By Lemma 4.2, and Theorem 2.9, rank(CF (t)) < rank(F ) and
by hypothesis Q×K is a permutational extension. Hence

CCF (t)/(Q)CF (t)
(K) = CCF (t)(K)(Q)CF (t)/(Q)CF (t)

= CF (K)(Q)CF (t)/(Q)CF (t)
∼= CF (K)/CF (K) ∩ (Q)CF (t).

(4)

Taking CF (K) ∩ (Q)CF (t) = CF (K) ∩ (CF (t) ∩ (Q)F ) = CF (K) ∩ (Q)F
into account yields

CF (K)/CF (K) ∩ (Q)CF (t) = CF (K)/CF (K) ∩ (Q)F
∼= CF (K)(Q)F/(Q)F
= CF (K)

(5)

Combining (3), (4) and (5) yields the desired equation (2). �

Deriving a final contradiction

In order to produce a final contradiction it suffices to establish (i)
by Lemma 4.7.
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There must be a finite subgroup R of G not F -conjugate into K. If
|R| < |K|, then taking Ḡ0 = RF̄ and G0 to be its preimage in G we
see that G0 = F×(G0 ∩K) is a PE-group and |G0 ∩K| < |K|. Then
by the minimality assumption on |K| the group R is F̄ -conjugate into
subgroup of K contradicting the hypothesis on R. Thus we must have
|R| = |K|. Lemma 4.4 implies that |K| > p. Conjugating R with a
suitable element in F we can achieve that {1} 6= R ∩K is a maximal
subgroup of K. Therefore, there exists 1 6= t ∈ socle(R)∩socle(K) with
R ≤ CG(t). Lemma 4.3 implies that we can have only the following
two cases:

α): CQ(t) = {1}.
β): CQ(t) = Q is a free pro-p factor of CF (t).

α) Lemma 2.6 shows that CF (t) ∼= CF (t) and so CG(t) ∼= CG(t). There-
fore there is R0 ≤ CG(t) with R0 = R. Now R is F -conjugate into K
since R0

∼= K is CF (t)-conjugate into K by the minimality assumption
on the rank of F (remember that rank(CF (t)) < rank(F ) by Lemma
4.2 and Theorem 2.9).

β) An application of Lemma 4.6 gives the natural isomorphism CG(t) ∼=
CG(t)/(Q)CF (t). Lemma 2.8(ii) implies that CG(t) = CF (t)×K is a
PE-group. Lemma 4.2, Theorem 2.9 and the minimality assumption
on the rank of F show that CG(t)/(Q)CF (t) = CG(t)/(Q)CF (t)×K is a
PE-group. Therefore, CG(t) = CF (t)×K is a PE-group. In particular,
R is CF (t)-conjugate into K, a contradiction. �

4.2. Permutational extension criterion.

Proposition 4.8. Every PE-group G = F×K is a permutational ex-
tension.

Proof. Suppose that the proposition is false. Then there is a counter-
example with K of minimal order. Among all such counter-examples
fix one with rank(F ) minimal. If there is no finite F -c maximal sub-
group {1} 6= L ≤ K then by Theorem 2.10 we find G = F0 q K =
HNN(K, 1, Z, 1) where Z is a base of F0, a contradiction. There-
fore, we can fix an F -c maximal subgroup {1} 6= L ≤ K and set
Q := 〈CF (L)k | k ∈ K〉. Observe that Q is K-invariant.

We claim that Q is a free pro-p factor of F and Q×K is a permuta-
tional extension.

Indeed, if L / K then Q = CF (L) and hence by Theorem 2.9 Q is a
free pro-p factor of F . Lemma 3.12 shows then that Q×K = NG(L) =
HNN(K,L, ZL, {L}) is a permutational extension. If NK(L) < K fix
any maximal subgroup K0 of K containing NK(L). By the minimality
assumption on |K| we can conclude that F×K0 is a permutational
extension and therefore the claim follows from Lemma 3.13(i).

Since Q×K is a permutational extension Proposition 4.1 implies that
G := G/(Q)F = F/(Q)F×K is a PE-group. As rank(F ) < rank(F )
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the minimality assumption on rank(F ) implies that

G = HNN(K,Bj, Yj, j ∈ J) (6)

is a permutational extension.
Let Sj be a set of coset representatives of NK(Bj)/Bj. By Lemma

3.8, CF (Bj) =
∐

s∈Sj
F (Yj)

s. Since ColF (Bj) is projective and, by

virtue of Proposition 4.1(ii) CF (Bj) = CF (Bj), we can lift Yj to a
subset Zj of some basis of CF (Bj).

We devise a “model”-permutational extension G̃ that finally will turn
out to be isomorphic to G.

To this end we let A = {(Bj, Yj) | j ∈ J} ∪ {L,ZL)}. Form G̃ :=
HNN(K,A,ZA, (A,ZA) ∈ A) and consider a bijection φ which sends,
for all j ∈ J every Bj 7→ Bj, Yj 7→ Zj, L 7→ L and ZL 7→ ZL. Using

the universal property of the permutational extension G̃, φ extends to
an epimorphism from G̃ to G.

Since G = G/(CF (L)k | k ∈ K)F = HNN(K,Bj, Yj, j ∈ J) and the

latter group is naturally isomorphic to G̃/(ZL)G̃, we can conclude that
kerφ ≤ (ZL)G̃ must hold.

Set F̃ := φ−1(F ) and note that G̃ = F̃×K. Choose a coset represen-
tative set RL of K/NK(L) and observe that Proposition 3.11 applied to
the family {CF̃ (Lr) | r ∈ RL} yields Q̃ :=

∐
r∈RL

CF̃ (Lr). Now choose
a coset representative set SL of NK(L)/L then Lemma 3.8 shows that
CF̃ (L) =

∐
s∈S F (Zs

L) and so we find

rank(Q̃) = |ZL||K : L|. (7)

As has been mentioned before F̃ /(Q̃)F̃
∼= F/(Q)F and so establishing

rank(Q̃) = rank(Q) (8)

would imply G ∼= G̃ giving the final contradiction with G̃ being a
permutational extension.

If NK(L) < K, then Lemma 3.13(ii) implies (8). Otherwise L/K and
thus Q = CF (L) ∼= CF̃ (L) because NG(L) = HNN(K,L, ZL, {L}) ∼=
NG̃(L) (cf. Lemma 3.12). Hence (8) holds in this case as well. �

Theorem 4.9. Let G be a semidirect product of a finitely generated
free pro-p group F and a finite p-group K. The following properties
are equivalent:

(i) G is a permutational extension.

(ii) Every finite subgroup of G is conjugate to a subgroup of K.

(iii) M := F/[F, F ] is a K-permutation module.

Proof. (i)⇒ (ii) & (iii). If G is a permutational extension, Remark 3.3
and Remark 3.7 together imply that G is a PE-group and that F/[F, F ]
is a permutation module.
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“(ii) ⇒ (i)” has been established in Proposition 4.8.

“(iii) ⇒ (ii)”. Suppose that (iii) holds but (ii) not. Then there is a
counter-example G with |K| minimal. Since M is a K-permutational
module it is of the form

M := F/[F, F ] =
⊕
i∈I

Mi (9)

with Mi = Zp[(K/Ai)× Zi] for subgroups Ai ≤ K and some finite sets
Zi. Let R be finite subgroup of G. Note that |R| = |RF ∩K| and M
is also RF ∩ K-permutational. Therefore, if |R| < |K| then, by the
minimality assumption on |K|, R is conjugate to FR∩K contradicting
to the assumption. Therefore RF = G so that R ∼= K.

Fix t ∈ socle(R). Since M is a 〈t〉-permutation module, t is conjugate
into K, and so we may assume t ∈ socle(K). Let M = Mp ⊕M1 be
the following Heller-Reiner decomposition for 〈t〉:

Mp :=
⊕

i∈I,t 6∈Ai

Mi, M1 :=
⊕

i∈I,t∈Ai

Mi.

By Lemma 2.3(i), F = CF (t) q Ft for a suitable free pro-p group Ft.
Corollary 2.5 implies that CF (t)[F, F ]/[F, F ] intersects Mp trivially and
rank(CF (t)) = rankZpM1. The natural epimorphism from CF (t) to
CF (t)[F, F ]/[F, F ] factors through the canonical K-module homomor-
phism from CF (t)/[CF (t), CF (t)] to CF (t)[F, F ]/[F, F ]. Therefore, by
the Krull-Schmidt theorem, CF (t)/[CF (t), CF (t)] and M1 are isomor-
phic K-permutation modules. As a consequence, CG(t)/〈t〉 is a permu-
tational extension by the minimality assumption on K and, therefore,
so is CG(t). Since R ≤ CG(t), we may conclude that R is conjugate
into K by Remark 3.3. �

5. Proof of the main theorems

In this section we shall use the notation and terminology of the theory
of pro-p groups acting on pro-p trees from [14]. This will also be the
main source of the references.

Theorem 5.1. Let G be an infinite finitely generated virtually free
pro-p group. Then G acts on a pro-p tree with finite vertex stabilizers.

Proof. By Theorem 3.5, G embeds into a group G̃ = E×G/F such that
every finite subgroup of G̃ is conjugate to a subgroup of G/F and E is
free pro-p.

By Theorem 4.9, G̃ is a permutational extension of E and so, by
Remark 3.7, can be written as an HNN-extension HNN(G/F,Ai, Zi, I)
where the base group G/F and the associated groups in Ai are all
finite. Thus G̃ acts on a pro-p tree T such that T/G̃ is a bouquet and
all vertex stabilizers are finite (cf. [14, p. 89], for the situation of a
single loop). �
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Proof of Theorem 1.2.

Proof. By Theorem 5.1, G acts on a pro-p tree with finite vertex sta-
bilizers. Since G is finitely generated, by [9, Theorem A], G splits as
either a non-trivial amalgamated free pro-p product with finite amalga-
mating subgroup or a non-trivial HNN-extension with finite associated
subgroups. �

Let (G,Γ) be a finite graph of finite p-groups then the fundamental
pro-p group Π1(G,Γ) is just the pro-p completion of the usual fun-
damental group π1(G,Γ) (cf. [20]). Theorem 5.1 allows to deduce
Theorem 1.1 from the [9, Theorem A].

Combining Theorem 1.2, the main result in [9], and the main result
of Hillman and Schmidt in [10] we can deduce that a pro-p group of pos-
itive deficiency having a finitely generated normal subgroup of infinite
index splits into an amalgam or an HNN-extension. A pro-p group has
positive deficiency if its minimal number of generators is greater than
its number of relations, i.e. dim(H1(G,Fp))− dim(H2(G,Fp)) > 0.

Corollary 5.2. Let G be a finitely generated pro-p group of positive
deficiency and N a nontrivial finitely generated normal subgroup of G
of infinite index. Then

(i) G splits as an amalgamated free pro-p product or as an HNN-
extension over a virtually free pro-p group.

(ii) G is the fundamental pro-p group of a finite graph of virtually
free pro-p groups.

Proof. By the main result of [10] either N is procyclic and G/N is
virtually free pro-p or N is virtually free pro-p and G/N is virtually
procyclic. Thus (i) and (ii) follow from Theorem 1.2 and [9, Theorem
A], respectively. �

We conclude this section with an example showing that the finite
generation assumption on G in Theorem 1.2 is essential.

Example 5.3. Let A and B be groups of order 2 and G0 = 〈A ×
B, t | tAt−1 = B〉 be a pro-2 HNN extension of A× B with associated
subgroups A and B. Note that G0 admits an automorphism of order 2
that swaps A and B and inverts t. Let G = G0×C be the holomorph.
Set H0 = 〈Tor(G0)〉 and H = H0×C. Since G0 is virtually free pro-2,
G and H are virtually free pro-2. The main result in [8] shows that H
does not decompose as the fundamental pro-2 group of a profinite graph
of finite 2-groups. It follows also from the proof in [8] that H does not
split as a amalgamated free pro-2 product or a pro-2 HNN-extension
over some finite subgroup.

6. Automorphisms

The following theorem is a consequence of Theorems 3.5 and 4.9:
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Theorem 6.1. Let Fn be a free pro-p group of finite rank n and P a
finite p-group of automorphisms of F . Then there is an embedding of
holomorphs Fn×P −→ Fm×P such that P permutes the elements of
some basis of the free pro-p group Fm.

For a finite set X the canonical embedding of the discrete free group
Φ(X) into its pro-p-completion F (X) induces an embedding of Aut(Φ(X))
into Aut(F (X)). This embedding is not dense [15]. The next theorem
shows that nevertheless it induces a surjection (but not necessarily
injection, cf. [3, Proposition 25]) on the conjugacy classes of finite
groups.

Theorem 6.2. Let F = F (X) be a finitely generated free pro-p group
and Φ = Φ(X) be a dense abstract free subgroup of F on the same
set of generators. Suppose that A ≤ Aut(F ) is a finite p-group. Then
there exists an automorphism β ∈ Aut(F ) such that the conjugate Aβ

is contained in Aut(Φ).

Proof. Identifying F with its group of inner automorphisms, we may
consider the holomorph G := F×A as a subgroup of Aut(F ). Since
G is a finitely generated virtually free pro-p group, we may use [9,
Theorem A] in order to present G as the fundamental pro-p group of
a finite graph (G,Γ) of finite p-groups. By [20, Theorem 3.10], every
finite subgroup of G is conjugate to a subgroup of a vertex group, so
there exists β0 ∈ G with Aβ0 ∈ G(v) for some v ∈ V (Γ). Let π1(G,Γ)
be the abstract fundamental group of the same graph of groups (cf.
e.g., [2]), and set Φ0 := π1(G,Γ) ∩ F . Choose a basis Y of Φ0. Then
Y is a basis of F (X), thus there exists α ∈ Aut(F (X)) sending X
bijectively to Y . For β := β0α

−1, Aβ ≤ Aut(Φ). �

Theorem 6.3. Let F be a free pro-p group of rank n.

(i) The embedding Aut(Φ) ≤ Aut(F ) induces a surjection be-
tween the conjugacy classes of finite p-subgroups of Aut(Φ)
and Aut(F ).

(ii) The Aut(F )-conjugacy classes of finite subgroups of Aut(F )
of order coprime to p are in one-to-one correspondence with
Aut(F/Φ(F ))-conjugacy classes of finite subgroups of
Aut(F/Φ(F )) ∼= GLn(Fp) of order coprime to p.

Proof. Statement (i) is a consequence of Theorem 6.2.
We begin the proof of (ii) by defining a homomorphism λ : Aut(F )→

Aut(F/Φ(F )) setting

λ(α)(fΦ(F )/Φ(F )) := α(f)Φ(F )/Φ(F ).

By [13, Lemma 4.5.5], the kernel K := kerλ is a pro-p group. Moreover,
λ is an epimorphism, since every automorphism α ∈ Aut(F/Φ(F )) can
be lifted to an automorphism of F (as a consequence of [13, Lemma
4.5.5]).
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Let us first show that every p′-subgroup Q (i.e., coprime to p sub-
group) of Aut(F/Φ(F )) is of the form Q = λ(Q0) for a suitable p′-
subgroup Q0 of Aut(F ). Indeed, λ−1(Q) contains the normal p-Sylow
subgroupK and, therefore, by the profinite version of the Schur-Zassen-
haus theorem [13, 2.3.15], λ−1(Q) is a split extension of the pro-p group
K by a p′-group Q0, i.e., λ−1(Q) = K×Q0, and so Q = λ(Q0), as de-
sired.

Next suppose that A and B are p′-subgroups of Aut(F ) so that λ(A)
and λ(B) are conjugate in Aut(F/Φ(F )). Then there exists g ∈ F so
that AgK = BK. Now K is a closed normal p-Sylow subgroup of BK
and K∩Ag = K∩B = {1} shows that Ag and B are complements of K
in BK. Therefore, again by [13, Theorem 2.3.15], they are conjugates
in BK. Hence A and B are conjugate in G. �
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